/n8n-tutorials

How to fix “Cannot read property choices of undefined” in OpenAI node?

Learn how to fix the "Cannot read property choices of undefined" error in OpenAI Node.js by checking API keys, handling errors, validating responses, and using the correct SDK version.

Matt Graham, CEO of Rapid Developers

Book a call with an Expert

Starting a new venture? Need to upgrade your web app? RapidDev builds application with your growth in mind.

Book a free consultation

How to fix “Cannot read property choices of undefined” in OpenAI node?

The "Cannot read property choices of undefined" error in the OpenAI node typically occurs when your code attempts to access the 'choices' property of an undefined response object. This usually happens when the API call fails to return the expected structure, often due to incorrect API parameters, network issues, or when the OpenAI service returns an error instead of the expected response.

 

Comprehensive Guide to Fixing "Cannot read property choices of undefined" in OpenAI Node

 

Step 1: Understand the Error

 

The error "Cannot read property choices of undefined" means your code is trying to access the 'choices' property on an object that is undefined. In the context of OpenAI API:

  • Successful API responses contain a 'choices' array with the generated content
  • If your response object is undefined, it means the API call failed or returned an unexpected format
  • This commonly happens when there's an error in your API call configuration or when OpenAI returns an error response

 

Step 2: Check Your OpenAI API Key

 

One common cause is an invalid or expired API key:


// Ensure your API key is correctly set
const { Configuration, OpenAIApi } = require("openai");

const configuration = new Configuration({
  apiKey: process.env.OPENAI_API_KEY, // Make sure this environment variable is set correctly
});

const openai = new OpenAIApi(configuration);

To verify your API key:

  • Check if your API key is valid and not expired
  • Ensure the environment variable is properly set
  • Consider adding a direct check for the API key before making calls

 

Step 3: Implement Proper Error Handling

 

Always use try/catch blocks when making API calls:


async function generateResponse() {
  try {
    const response = await openai.createCompletion({
      model: "text-davinci-003",
      prompt: "Hello, world!",
      max\_tokens: 50
    });
    
    // Check if response exists and has the expected structure
    if (response && response.data && response.data.choices) {
      return response.data.choices[0].text;
    } else {
      console.error("Response structure is not as expected:", response);
      return "Error: Unexpected response structure";
    }
  } catch (error) {
    console.error("OpenAI API error:", error);
    return "Error calling OpenAI API";
  }
}

 

Step 4: Check Response Structure

 

Different OpenAI API endpoints return different response structures. Ensure you're accessing the correct properties:


// For completions API
try {
  const response = await openai.createCompletion({
    model: "text-davinci-003",
    prompt: "Hello, world!",
    max\_tokens: 50
  });
  
  // Correct access pattern
  const result = response.data.choices[0].text;
} catch (error) {
  console.error(error);
}

// For chat completions API
try {
  const response = await openai.createChatCompletion({
    model: "gpt-3.5-turbo",
    messages: [{"role": "user", "content": "Hello, world!"}]
  });
  
  // Different access pattern
  const result = response.data.choices[0].message.content;
} catch (error) {
  console.error(error);
}

 

Step 5: Debug the Response Object

 

Add debugging code to inspect the full response:


try {
  const response = await openai.createCompletion({
    model: "text-davinci-003",
    prompt: "Hello, world!",
    max\_tokens: 50
  });
  
  // Debug the full response structure
  console.log("Full response:", JSON.stringify(response, null, 2));
  
  // Cautiously access the choices property
  if (response && response.data && response.data.choices && response.data.choices.length > 0) {
    return response.data.choices[0].text;
  } else {
    console.error("Invalid response structure");
    return null;
  }
} catch (error) {
  console.error("API call error:", error);
  return null;
}

 

Step 6: Check for API Version Compatibility

 

The OpenAI Node.js library has evolved over time. Make sure you're using the correct version:


// For newer versions (openai >= 3.0.0)
import OpenAI from "openai";

const openai = new OpenAI({
  apiKey: process.env.OPENAI_API_KEY,
});

async function generateText() {
  try {
    const completion = await openai.completions.create({
      model: "text-davinci-003",
      prompt: "Hello, world!",
    });
    
    // New structure
    return completion.choices[0].text;
  } catch (error) {
    console.error("Error:", error);
    return null;
  }
}

// For older versions (openai < 3.0.0)
import { Configuration, OpenAIApi } from "openai";

const configuration = new Configuration({
  apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(configuration);

async function generateText() {
  try {
    const response = await openai.createCompletion({
      model: "text-davinci-003",
      prompt: "Hello, world!",
    });
    
    // Old structure
    return response.data.choices[0].text;
  } catch (error) {
    console.error("Error:", error);
    return null;
  }
}

 

Step 7: Handle Axios Response Structure (for older versions)

 

If you're using an older version of the OpenAI library (before v3.0.0), the response is wrapped in an Axios response object:


const { Configuration, OpenAIApi } = require("openai");

const configuration = new Configuration({
  apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(configuration);

async function generateText() {
  try {
    // The response is an Axios response object
    const axiosResponse = await openai.createCompletion({
      model: "text-davinci-003",
      prompt: "Hello, world!",
    });
    
    // The actual OpenAI response is in response.data
    const openaiResponse = axiosResponse.data;
    
    // Now we can safely access the choices
    if (openaiResponse && openaiResponse.choices && openaiResponse.choices.length > 0) {
      return openaiResponse.choices[0].text;
    } else {
      console.error("Unexpected response structure:", openaiResponse);
      return null;
    }
  } catch (error) {
    if (error.response) {
      // The request was made and the server responded with a status code
      // that falls out of the range of 2xx
      console.error("API error:", error.response.data);
    } else if (error.request) {
      // The request was made but no response was received
      console.error("No response received:", error.request);
    } else {
      // Something happened in setting up the request that triggered an Error
      console.error("Error:", error.message);
    }
    return null;
  }
}

 

Step 8: Check for Rate Limiting and Quota Issues

 

Your API calls might fail if you hit rate limits or exceed your quota:


try {
  const response = await openai.createCompletion({
    model: "text-davinci-003",
    prompt: "Hello, world!",
    max\_tokens: 50
  });
  
  return response.data.choices[0].text;
} catch (error) {
  if (error.response) {
    const status = error.response.status;
    const data = error.response.data;
    
    if (status === 429) {
      console.error("Rate limit exceeded or quota exceeded:", data);
      // Implement backoff strategy or user notification
      return "Rate limit reached. Please try again later.";
    } else {
      console.error(`API error (${status}):`, data);
      return `Error: ${data.error.message || "Unknown API error"}`;
    }
  } else {
    console.error("Network or client error:", error);
    return "Error connecting to OpenAI";
  }
}

 

Step 9: Implement Request Validation

 

Validate your request parameters before sending:


function validateCompletionRequest(params) {
  const errors = [];
  
  if (!params.model) {
    errors.push("Missing 'model' parameter");
  }
  
  if (!params.prompt && !params.messages) {
    errors.push("Either 'prompt' or 'messages' must be provided");
  }
  
  if (params.max_tokens && (typeof params.max_tokens !== 'number' || params.max\_tokens < 1)) {
    errors.push("'max\_tokens' must be a positive number");
  }
  
  return errors;
}

async function safeCreateCompletion(params) {
  const validationErrors = validateCompletionRequest(params);
  
  if (validationErrors.length > 0) {
    console.error("Validation errors:", validationErrors);
    throw new Error(`Invalid request parameters: ${validationErrors.join(", ")}`);
  }
  
  try {
    const response = await openai.createCompletion(params);
    return response.data.choices[0].text;
  } catch (error) {
    console.error("API error:", error);
    throw error;
  }
}

 

Step 10: Use a Wrapper Function with Default Fallback

 

Create a wrapper function that provides a default result if the API call fails:


async function safeOpenAICall(apiCallFn, defaultResult = null) {
  try {
    const result = await apiCallFn();
    
    // Safely navigate the response object
    if (result && 
        result.data && 
        result.data.choices && 
        result.data.choices.length > 0) {
      return result.data.choices[0].text;
    } else {
      console.warn("Unexpected API response structure:", result);
      return defaultResult;
    }
  } catch (error) {
    console.error("OpenAI API error:", error);
    return defaultResult;
  }
}

// Usage example
const response = await safeOpenAICall(
  () => openai.createCompletion({
    model: "text-davinci-003",
    prompt: "Hello, world!",
    max\_tokens: 50
  }),
  "Sorry, I couldn't generate a response at this time."
);

 

Step 11: Check for Specific Model Compatibility

 

Different models require different API endpoints and have different response structures:


async function generateWithCorrectEndpoint(prompt, model) {
  try {
    let response;
    
    // Chat models use createChatCompletion
    if (model.includes("gpt-3.5-turbo") || model.includes("gpt-4")) {
      response = await openai.createChatCompletion({
        model: model,
        messages: [{ role: "user", content: prompt }],
      });
      
      return response.data.choices[0].message.content;
    } 
    // Completion models use createCompletion
    else if (model.includes("text-davinci") || model.includes("text-curie") || 
             model.includes("text-babbage") || model.includes("text-ada")) {
      response = await openai.createCompletion({
        model: model,
        prompt: prompt,
        max\_tokens: 100,
      });
      
      return response.data.choices[0].text;
    }
    // Handle other model types like DALL-E, embeddings, etc.
    else {
      throw new Error(`Unsupported model: ${model}`);
    }
  } catch (error) {
    console.error(`Error with model ${model}:`, error);
    return null;
  }
}

 

Step 12: Update to the Latest OpenAI SDK Version

 

The newest OpenAI SDK (v3+) has a different structure that's more reliable:


// Install the latest version:
// npm install openai@latest

import OpenAI from "openai";

const openai = new OpenAI({
  apiKey: process.env.OPENAI_API_KEY,
});

async function generateText() {
  try {
    const completion = await openai.completions.create({
      model: "text-davinci-003",
      prompt: "Hello, world!",
      max\_tokens: 50,
    });
    
    // New structure is simpler and less prone to the undefined error
    if (completion.choices && completion.choices.length > 0) {
      return completion.choices[0].text;
    } else {
      console.error("Unexpected response structure:", completion);
      return null;
    }
  } catch (error) {
    if (error instanceof OpenAI.APIError) {
      console.error("OpenAI API Error:", error);
      // The new SDK provides better error types
      if (error.status === 429) {
        return "Rate limit exceeded. Please try again later.";
      }
    } else {
      console.error("Unexpected error:", error);
    }
    return null;
  }
}

 

Step 13: Implement a Retry Mechanism

 

For intermittent failures, implement a retry mechanism with exponential backoff:


async function retryOpenAICall(apiCallFn, maxRetries = 3) {
  let lastError;
  
  for (let attempt = 1; attempt <= maxRetries; attempt++) {
    try {
      const response = await apiCallFn();
      
      if (response && 
          response.data && 
          response.data.choices && 
          response.data.choices.length > 0) {
        return response.data.choices[0].text;
      } else {
        console.warn(`Attempt ${attempt}: Unexpected response structure`);
        // Continue to retry
      }
    } catch (error) {
      lastError = error;
      
      // Don't retry if it's a 400 error (bad request)
      if (error.response && error.response.status === 400) {
        console.error("Bad request, not retrying:", error.response.data);
        throw error;
      }
      
      // For rate limiting (429) or server errors (5xx), retry with backoff
      const retryAfter = error.response?.headers?.['retry-after'] || Math.pow(2, attempt) \* 1000;
      console.warn(`Attempt ${attempt} failed, retrying in ${retryAfter}ms:`, error.message);
      
      // Wait before the next retry
      await new Promise(resolve => setTimeout(resolve, retryAfter));
    }
  }
  
  console.error(`Failed after ${maxRetries} attempts`, lastError);
  throw lastError || new Error(`Failed after ${maxRetries} attempts`);
}

// Usage
try {
  const text = await retryOpenAICall(() => 
    openai.createCompletion({
      model: "text-davinci-003",
      prompt: "Hello, world!",
      max\_tokens: 50
    })
  );
  console.log("Generated text:", text);
} catch (error) {
  console.error("All retries failed:", error);
}

 

Step 14: Check Network Connectivity

 

Ensure your application has proper internet connectivity:


const axios = require('axios');

async function checkConnectivity() {
  try {
    // Try to reach OpenAI's API endpoint
    await axios.get('https://api.openai.com/v1/models', {
      timeout: 5000, // 5 second timeout
      headers: {
        'Authorization': `Bearer ${process.env.OPENAI_API_KEY}`
      }
    });
    return true;
  } catch (error) {
    console.error("Connectivity check failed:", error.message);
    return false;
  }
}

async function safeOpenAICall() {
  // First check connectivity
  const isConnected = await checkConnectivity();
  if (!isConnected) {
    console.error("Network connectivity issues detected. Cannot reach OpenAI API.");
    return "Network connectivity issues. Please check your internet connection.";
  }
  
  try {
    const response = await openai.createCompletion({
      model: "text-davinci-003",
      prompt: "Hello, world!",
      max\_tokens: 50
    });
    
    return response.data.choices[0].text;
  } catch (error) {
    console.error("API call failed:", error);
    return null;
  }
}

 

Step 15: Use TypeScript for Better Type Safety

 

If you're using TypeScript, leverage type checking to avoid these errors:


import { Configuration, OpenAIApi } from "openai";

// Define expected response types
interface OpenAIChoice {
  text: string;
  index: number;
  logprobs: null | any;
  finish\_reason: string;
}

interface OpenAIResponse {
  id: string;
  object: string;
  created: number;
  model: string;
  choices: OpenAIChoice[];
  usage: {
    prompt\_tokens: number;
    completion\_tokens: number;
    total\_tokens: number;
  };
}

async function generateText(prompt: string): Promise {
  const configuration = new Configuration({
    apiKey: process.env.OPENAI_API_KEY,
  });
  const openai = new OpenAIApi(configuration);

  try {
    const response = await openai.createCompletion({
      model: "text-davinci-003",
      prompt,
      max\_tokens: 50,
    });

    // TypeScript helps ensure the response has the expected structure
    const data = response.data as OpenAIResponse;
    
    if (!data.choices || data.choices.length === 0) {
      console.error("No choices in response:", data);
      return null;
    }
    
    return data.choices[0].text;
  } catch (error) {
    console.error("Error generating text:", error);
    return null;
  }
}

 

Step 16: Create a Comprehensive Error Handling Utility

 

Build a comprehensive error handling utility specifically for OpenAI API calls:


class OpenAIErrorHandler {
  static async safeExecute(apiCallFn, options = {}) {
    const {
      maxRetries = 3,
      retryableStatuses = [429, 500, 502, 503, 504],
      defaultResponse = null,
      timeout = 30000,
      onError = null,
    } = options;
    
    let lastError;
    
    for (let attempt = 1; attempt <= maxRetries; attempt++) {
      try {
        // Add timeout to the API call
        const controller = new AbortController();
        const timeoutId = setTimeout(() => controller.abort(), timeout);
        
        const response = await Promise.race([
          apiCallFn({ signal: controller.signal }),
          new Promise((\_, reject) => 
            setTimeout(() => reject(new Error("API call timed out")), timeout)
          )
        ]);
        
        clearTimeout(timeoutId);
        
        // Validate the response structure
        if (response && 
            response.data && 
            response.data.choices && 
            response.data.choices.length > 0) {
          
          // Check if the API returned an error in a successful response
          if (response.data.error) {
            throw new Error(`API returned error: ${response.data.error.message}`);
          }
          
          return response.data.choices[0].text;
        } else {
          console.warn(`Attempt ${attempt}: Unexpected response structure`, response);
          // Continue to retry
        }
      } catch (error) {
        lastError = error;
        
        // Custom error handler if provided
        if (onError) {
          await onError(error, attempt);
        }
        
        // Check if we should retry based on error type
        const status = error.response?.status;
        
        if (error.name === 'AbortError') {
          console.error(`Attempt ${attempt}: Request timed out`);
        } else if (status && !retryableStatuses.includes(status)) {
          // Don't retry client errors except specified ones
          console.error(`Error not retryable (${status}):`, error.response?.data || error.message);
          throw error;
        } else {
          // For retryable errors, implement exponential backoff
          const retryAfter = error.response?.headers?.['retry-after'] || 
                             Math.min(Math.pow(2, attempt) \* 1000, 30000); // Max 30s
          
          console.warn(`Attempt ${attempt} failed, retrying in ${retryAfter}ms:`, 
                       error.response?.data?.error?.message || error.message);
          
          await new Promise(resolve => setTimeout(resolve, retryAfter));
        }
      }
    }
    
    console.error(`Failed after ${maxRetries} attempts`, lastError);
    
    if (defaultResponse !== undefined) {
      return defaultResponse;
    }
    
    throw lastError || new Error(`Failed after ${maxRetries} attempts`);
  }
}

// Usage example
async function generateTextSafely(prompt) {
  return await OpenAIErrorHandler.safeExecute(
    () => openai.createCompletion({
      model: "text-davinci-003",
      prompt: prompt,
      max\_tokens: 100
    }),
    {
      maxRetries: 3,
      defaultResponse: "I couldn't generate a response at this time.",
      onError: (error, attempt) => {
        // Log to monitoring service or take other actions
        console.error(`API Error on attempt ${attempt}:`, error);
      }
    }
  );
}

 

Step 17: Verify the Model Availability

 

Ensure you're using a model that's available in your account:


async function checkModelAvailability(modelName) {
  try {
    const response = await openai.listModels();
    const availableModels = response.data.data;
    
    const modelExists = availableModels.some(model => model.id === modelName);
    
    if (!modelExists) {
      console.warn(`Model "${modelName}" not found in available models`);
      return false;
    }
    
    return true;
  } catch (error) {
    console.error("Error checking model availability:", error);
    return false;
  }
}

async function generateWithFallbackModels(prompt) {
  // Try models in order of preference
  const modelPreference = [
    "gpt-4",
    "gpt-3.5-turbo",
    "text-davinci-003",
    "text-curie-001"
  ];
  
  for (const model of modelPreference) {
    const isAvailable = await checkModelAvailability(model);
    
    if (!isAvailable) {
      console.log(`Model ${model} not available, trying next...`);
      continue;
    }
    
    try {
      let response;
      
      if (model.includes("gpt-")) {
        // Chat completion for GPT models
        response = await openai.createChatCompletion({
          model: model,
          messages: [{ role: "user", content: prompt }]
        });
        
        return response.data.choices[0].message.content;
      } else {
        // Text completion for other models
        response = await openai.createCompletion({
          model: model,
          prompt: prompt,
          max\_tokens: 100
        });
        
        return response.data.choices[0].text;
      }
    } catch (error) {
      console.error(`Error with model ${model}:`, error);
      // Try the next model
    }
  }
  
  throw new Error("All models failed to generate a response");
}

 

Step 18: Use the Stream Parameter with Care

 

If you're using the stream parameter, handle it differently:


// Using stream parameter with the OpenAI API
async function streamCompletion(prompt) {
  try {
    const response = await openai.createCompletion({
      model: "text-davinci-003",
      prompt: prompt,
      max\_tokens: 50,
      stream: true,
    }, { responseType: 'stream' });
    
    // Stream responses have a different structure
    // The response is a stream, not an object with choices
    const stream = response.data;
    
    let result = '';
    
    return new Promise((resolve, reject) => {
      stream.on('data', (chunk) => {
        // Parse the chunk as a data stream
        const lines = chunk
          .toString()
          .split('\n')
          .filter(line => line.trim() !== '');
        
        for (const line of lines) {
          const message = line.replace(/^data: /, '');
          
          if (message === '[DONE]') {
            resolve(result);
            return;
          }
          
          try {
            const parsed = JSON.parse(message);
            const text = parsed.choices[0].text;
            if (text) {
              result += text;
              // Process each chunk as it arrives
              process.stdout.write(text);
            }
          } catch (error) {
            console.error("Error parsing chunk:", error);
          }
        }
      });
      
      stream.on('end', () => {
        resolve(result);
      });
      
      stream.on('error', (error) => {
        reject(error);
      });
    });
  } catch (error) {
    console.error("Stream error:", error);
    throw error;
  }
}

 

Step 19: Use a Complete Error Classification System

 

Create a comprehensive system to classify and handle different types of OpenAI API errors:


// Error classification and handling
class OpenAIErrorClassifier {
  static classifyError(error) {
    // Default classification
    let classification = {
      type: 'unknown',
      retryable: false,
      message: error.message,
      originalError: error
    };
    
    // No response from the server
    if (!error.response) {
      if (error.code === 'ECONNREFUSED' || error.code === 'ENOTFOUND') {
        classification = {
          type: 'network',
          retryable: true,
          message: 'Network connectivity issue',
          originalError: error
        };
      } else if (error.code === 'ETIMEDOUT') {
        classification = {
          type: 'timeout',
          retryable: true,
          message: 'Request timed out',
          originalError: error
        };
      }
      return classification;
    }
    
    // Server responded with an error
    const status = error.response.status;
    const data = error.response.data;
    
    // Authentication errors
    if (status === 401) {
      classification = {
        type: 'authentication',
        retryable: false,
        message: 'Invalid API key or authentication token',
        originalError: error
      };
    }
    // Permission errors
    else if (status === 403) {
      classification = {
        type: 'permission',
        retryable: false,
        message: 'You do not have permission to access this resource',
        originalError: error
      };
    }
    // Bad request errors
    else if (status === 400) {
      classification = {
        type: 'bad\_request',
        retryable: false,
        message: data?.error?.message || 'Bad request',
        originalError: error
      };
    }
    // Not found errors
    else if (status === 404) {
      classification = {
        type: 'not\_found',
        retryable: false,
        message: 'The requested resource was not found',
        originalError: error
      };
    }
    // Rate limiting
    else if (status === 429) {
      classification = {
        type: 'rate\_limit',
        retryable: true,
        message: 'Rate limit exceeded',
        retryAfter: error.response.headers['retry-after'] || 60,
        originalError: error
      };
    }
    // Server errors
    else if (status >= 500) {
      classification = {
        type: 'server\_error',
        retryable: true,
        message: 'OpenAI server error',
        originalError: error
      };
    }
    
    return classification;
  }
  
  static async handleError(error, options = {}) {
    const classification = this.classifyError(error);
    
    console.error(`OpenAI API error [${classification.type}]: ${classification.message}`);
    
    // Handle specific error types
    switch (classification.type) {
      case 'authentication':
        console.error("Check your API key and ensure it's valid");
        break;
      
      case 'rate\_limit':
        const retryAfter = classification.retryAfter || 60;
        console.log(`Rate limited. Retrying after ${retryAfter} seconds...`);
        
        if (options.retry && classification.retryable) {
          await new Promise(resolve => setTimeout(resolve, retryAfter \* 1000));
          return true; // Indicate retry is needed
        }
        break;
      
      case 'network':
      case 'timeout':
      case 'server\_error':
        if (options.retry && classification.retryable) {
          const backoffTime = options.backoffTime || 2000;
          console.log(`Retrying after ${backoffTime/1000} seconds...`);
          await new Promise(resolve => setTimeout(resolve, backoffTime));
          return true; // Indicate retry is needed
        }
        break;
      
      default:
        // For non-retryable errors, just log them
        console.error("Error details:", error.response?.data || error);
    }
    
    return false; // Indicate no retry by default
  }
}

// Example usage
async function robustOpenAICall(apiCallFn, maxRetries = 3) {
  let attempt = 0;
  
  while (attempt < maxRetries) {
    try {
      const response = await apiCallFn();
      
      if (response && 
          response.data && 
          response.data.choices && 
          response.data.choices.length > 0) {
        return response.data.choices[0].text;
      } else {
        throw new Error("Response missing expected structure");
      }
    } catch (error) {
      attempt++;
      
      const shouldRetry = await OpenAIErrorClassifier.handleError(error, {
        retry: attempt < maxRetries,
        backoffTime: Math.pow(2, attempt) \* 1000, // Exponential backoff
      });
      
      if (!shouldRetry) {
        throw error; // Rethrow if no retry is recommended
      }
    }
  }
  
  throw new Error(`Failed after ${maxRetries} attempts`);
}

 

Step 20: Implement Monitoring and Logging

 

Add comprehensive monitoring and logging to help troubleshoot issues:


// Implement a logger with context
class APILogger {
  static log(level, message, context = {}) {
    const timestamp = new Date().toISOString();
    const logEntry = {
      timestamp,
      level,
      message,
      ...context
    };
    
    // In production, you might send this to a logging service
    console.log(JSON.stringify(logEntry));
    
    // For errors, you could also log to a file or monitoring service
    if (level === 'error' || level === 'fatal') {
      // Example: log to file or send to error tracking service
    }
  }
  
  static trackAPICall(apiName, params) {
    const startTime = Date.now();
    const requestId = Math.random().toString(36).substring(2, 15);
    
    this.log('info', `API call started: ${apiName}`, {
      requestId,
      params: JSON.stringify(params)
    });
    
    return {
      success: (response) => {
        const duration = Date.now() - startTime;
        this.log('info', `API call succeeded: ${apiName}`, {
          requestId,
          duration,
          responseSize: JSON.stringify(response).length
        });
        return response;
      },
      failure: (error) => {
        const duration = Date.now() - startTime;
        this.log('error', `API call failed: ${apiName}`, {
          requestId,
          duration,
          error: error.message,
          stack: error.stack,
          response: error.response ? JSON.stringify(error.response.data) : null
        });
        throw error;
      }
    };
  }
}

// Using the logger with OpenAI API calls
async function monitoredCompletion(prompt) {
  const tracker = APILogger.trackAPICall('openai.createCompletion', { prompt });
  
  try {
    const response = await openai.createCompletion({
      model: "text-davinci-003",
      prompt: prompt,
      max\_tokens: 50
    });
    
    return tracker.success(response).data.choices[0].text;
  } catch (error) {
    return tracker.failure(error);
  }
}

 

By following these steps, you should be able to diagnose and fix the "Cannot read property choices of undefined" error in your OpenAI Node.js application. The key is proper error handling, validation of API responses, and making sure you're using the correct response structure for the specific OpenAI API endpoint you're calling.

Want to explore opportunities to work with us?

Connect with our team to unlock the full potential of no-code solutions with a no-commitment consultation!

Book a Free Consultation

Client trust and success are our top priorities

When it comes to serving you, we sweat the little things. That’s why our work makes a big impact.

Rapid Dev was an exceptional project management organization and the best development collaborators I've had the pleasure of working with. They do complex work on extremely fast timelines and effectively manage the testing and pre-launch process to deliver the best possible product. I'm extremely impressed with their execution ability.

CPO, Praction - Arkady Sokolov

May 2, 2023

Working with Matt was comparable to having another co-founder on the team, but without the commitment or cost. He has a strategic mindset and willing to change the scope of the project in real time based on the needs of the client. A true strategic thought partner!

Co-Founder, Arc - Donald Muir

Dec 27, 2022

Rapid Dev are 10/10, excellent communicators - the best I've ever encountered in the tech dev space. They always go the extra mile, they genuinely care, they respond quickly, they're flexible, adaptable and their enthusiasm is amazing.

Co-CEO, Grantify - Mat Westergreen-Thorne

Oct 15, 2022

Rapid Dev is an excellent developer for no-code and low-code solutions.
We’ve had great success since launching the platform in November 2023. In a few months, we’ve gained over 1,000 new active users. We’ve also secured several dozen bookings on the platform and seen about 70% new user month-over-month growth since the launch.

Co-Founder, Church Real Estate Marketplace - Emmanuel Brown

May 1, 2024 

Matt’s dedication to executing our vision and his commitment to the project deadline were impressive. 
This was such a specific project, and Matt really delivered. We worked with a really fast turnaround, and he always delivered. The site was a perfect prop for us!

Production Manager, Media Production Company - Samantha Fekete

Sep 23, 2022