Discover how to build a powerful web scraping API with Lovable. Follow our step-by-step guide to efficiently extract data from any website.
Book a call with an Expert
Starting a new venture? Need to upgrade your web app? RapidDev builds application with your growth in mind.
Setting Up Your Lovable Project
Creating the Dependency Manifest
lovable.json
. This file will list all the libraries your project depends on.lovable.json
to install Flask, Requests, and BeautifulSoup:
{
"dependencies": {
"Flask": "latest",
"requests": "latest",
"beautifulsoup4": "latest"
}
}
Creating the Main Application File
main.py
. This file will contain the API code and web scraping logic.main.py
:
from flask import Flask, request, jsonify
import requests
from bs4 import BeautifulSoup
app = Flask(name)
@app.route('/scrape', methods=['GET'])
def scrape():
# Retrieve the URL parameter from the request
url = request.args.get('url')
if not url:
return jsonify({"error": "URL parameter is missing"}), 400
try:
# Send a GET request to the provided URL
response = requests.get(url)
if response.status\_code != 200:
return jsonify({"error": "Failed to retrieve the webpage"}), 400
# Parse the webpage content with BeautifulSoup
soup = BeautifulSoup(response.text, 'html.parser')
# Example: Extract text from all paragraph tags
paragraphs = [p.get_text() for p in soup.find_all('p')]
return jsonify({"paragraphs": paragraphs})
except Exception as e:
return jsonify({"error": str(e)}), 500
Entry point for Lovable; ensure the application binds to the correct host and port.
if name == 'main':
app.run(host='0.0.0.0', port=5000)
/scrape
that extracts paragraph texts from the given URL.
Configuring and Running Your Web Scraping API
lovable.json
manifest.0.0.0.0
on port 5000
.
Testing Your API Endpoint
http://<your-lovable-project-url>:5000/scrape?url=https://example.com
, replacing https://example.com
with the URL you wish to scrape.
Updating and Deploying Changes
const express = require('express');
const axios = require('axios');
const cheerio = require('cheerio');
const app = express();
app.use(express.json());
app.post('/api/scrape', async (req, res) => {
try {
const { url } = req.body;
const response = await axios.get(url);
const $ = cheerio.load(response.data);
// Structuring scraped data into a specific JSON format
const dataStructure = {
pageTitle: $('title').text(),
headers: [],
links: []
};
$('h1, h2, h3').each((\_, element) => {
dataStructure.headers.push({
tag: element.tagName.toLowerCase(),
text: $(element).text().trim()
});
});
$('a').each((\_, element) => {
const href = $(element).attr('href');
if (href && href.startsWith('http')) {
dataStructure.links.push({
text: $(element).text().trim(),
href
});
}
});
res.json({ success: true, data: dataStructure });
} catch (error) {
res.status(500).json({ success: false, error: error.message });
}
});
app.listen(3000, () => {
console.log('Web scraping API is running on port 3000');
});
const express = require('express');
const puppeteer = require('puppeteer');
const axios = require('axios');
require('dotenv').config();
const app = express();
app.use(express.json());
app.post('/api/analyze', async (req, res) => {
const { url } = req.body;
if (!url) {
return res.status(400).json({ success: false, error: 'URL is required' });
}
let browser;
try {
browser = await puppeteer.launch();
const page = await browser.newPage();
await page.goto(url, { waitUntil: 'domcontentloaded' });
const pageContent = await page.evaluate(() => document.body.innerText);
await browser.close();
// Call external Sentiment Analysis API (MeaningCloud) to analyze scraped text
const sentimentApiUrl = 'https://api.meaningcloud.com/sentiment-2.1';
const params = new URLSearchParams({
key: process.env.MEANINGCLOUD_API_KEY,
lang: 'en',
txt: pageContent
});
const response = await axios.post(sentimentApiUrl, params);
const sentimentData = response.data;
res.json({
success: true,
url,
sentiment: sentimentData
});
} catch (error) {
if (browser) {
await browser.close();
}
res.status(500).json({ success: false, error: error.message });
}
});
app.listen(3000, () => {
console.log('Scraping & sentiment analysis API running on port 3000');
});
const express = require('express');
const axios = require('axios');
const puppeteer = require('puppeteer');
const Redis = require('ioredis');
const lovable = require('lovable');
const app = express();
const redis = new Redis();
app.use(express.json());
app.post('/api/scrape', async (req, res) => {
const { url, useDynamic } = req.body;
if (!url) return res.status(400).json({ error: 'URL is required' });
const cacheKey = `scrape:${url}`;
try {
let cachedResult = await redis.get(cacheKey);
if (cachedResult) {
return res.json({ source: 'cache', data: JSON.parse(cachedResult) });
}
let rawHtml;
if (useDynamic) {
const browser = await puppeteer.launch({ args: ['--no-sandbox'] });
const page = await browser.newPage();
await page.goto(url, { waitUntil: 'networkidle2' });
rawHtml = await page.content();
await browser.close();
} else {
const response = await axios.get(url);
rawHtml = response.data;
}
const parsedData = lovable.extract(rawHtml, {
title: { selector: 'title', type: 'text' },
description: { selector: 'meta[name="description"]', attr: 'content' },
links: { selector: 'a', type: 'array', attr: 'href' }
});
await redis.set(cacheKey, JSON.stringify(parsedData), 'EX', 3600);
res.json({ source: 'live', data: parsedData });
} catch (err) {
res.status(500).json({ error: err.message });
}
});
app.listen(4000, () => {
console.log('Lovable Web Scraping API running on port 4000');
});
Book a call with an Expert
Starting a new venture? Need to upgrade your web app? RapidDev builds application with your growth in mind.
Best Practices for Building a Web Scraping API with AI Code Generators
This guide explains how to build a web scraping API using AI code generators. The guide is structured to help even those without a technical background understand the process step by step.
Prerequisites
Setting Up Your Development Environment
python -m venv venv
# On Windows
venv\Scripts\activate
On Unix or MacOS
source venv/bin/activate
pip install requests beautifulsoup4 flask
Planning Your Web Scraping Functionality
Using AI Code Generators to Assist Development
// Prompt example for scraping:
"Generate a Python function using requests and BeautifulSoup to retrieve the title and meta description from a given URL."
Building the API Framework
app.py
which will contain the API code.app.py
:
from flask import Flask, request, jsonify
import requests
from bs4 import BeautifulSoup
app = Flask(name)
def scrape_site(url):
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
title = soup.title.string if soup.title else "No title found"
meta_desc = ""
if soup.find("meta", attrs={"name": "description"}):
meta_desc = soup.find("meta", attrs={"name": "description"}).get("content")
return {"title": title, "description": meta_desc}
else:
return {"error": "Failed to retrieve the content"}
@app.route('/scrape', methods=['GET'])
def scrape_api():
url = request.args.get('url')
if not url:
return jsonify({"error": "URL parameter is missing"}), 400
data = scrape_site(url)
return jsonify(data)
if name == 'main':
app.run(debug=True)
Integrating AI Code Generator Enhancements
// "Improve error handling in the scrape\_site function and add logging to track requests."
Testing Your Web Scraping API
python app.py
http://127.0.0.1:5000/scrape?url=https://example.com
Implementing Best Practices for Scalability and Reliability
Deploying Your Web Scraping API
requirements.txt
file. Generate it by running:
pip freeze > requirements.txt
Maintaining and Updating Your API
By following these steps, you can successfully build a robust and efficient web scraping API with support from AI code generators.
When it comes to serving you, we sweat the little things. That’s why our work makes a big impact.