Learn to build a robust resume builder backend with Lovable. Follow our step-by-step guide packed with best practices, tips, and practical code examples for smooth integration.
Book a call with an Expert
Starting a new venture? Need to upgrade your web app? RapidDev builds application with your growth in mind.
Setting Up the Project Environment
Since Lovable doesn’t support a terminal for dependency installation, you need to manually add configuration for needed dependencies into your project’s configuration file. In your Lovable project, locate or create a file named package.json
at the root. Insert the below code to include Express (a Node.js framework) and a body-parser middleware for handling JSON data.
{
"name": "lovable-resume-builder-backend",
"version": "1.0.0",
"description": "Backend API for the Resume Builder built with Lovable",
"main": "app.js",
"dependencies": {
"express": "^4.18.2",
"body-parser": "^1.20.2"
},
"scripts": {
"start": "node app.js"
}
}
Make sure this file is saved in the project’s root directory. Lovable will read this configuration and install the dependencies automatically.
Creating the Main Application File
Create a new file in the root directory called app.js
. This file will be the entry point for your Resume Builder backend API. In this file, set up an Express server that listens on the port provided by Lovable. Paste the following code snippet into app.js
:
const express = require('express');
const bodyParser = require('body-parser');
const app = express();
// Use body-parser middleware to parse JSON requests
app.use(bodyParser.json());
// Use the port provided by Lovable environment or default to 8080
const PORT = process.env.PORT || 8080;
// Root endpoint for testing API is working
app.get('/', (req, res) => {
res.send('Resume Builder Backend is running on Lovable!');
});
// Start the server
app.listen(PORT, () => {
console.log(`Server is running on port ${PORT}`);
});
Ensure that this file is located in the root of your project so Lovable can start the server using the start
script defined in package.json
.
Creating API Endpoints for Resume Operations
Within the same app.js
file or in a separate file (if you prefer modularization), create endpoints to handle resume data. For simplicity, the following example demonstrates endpoints to create and retrieve resumes. If you choose to separate routes, create a new file named resumeRoutes.js
and include these routes. Here’s the code that you can insert into a new section in your app.js
file below the previous snippet:
// In-memory array to store resume data
const resumes = [];
// Endpoint to create a new resume
app.post('/api/resumes', (req, res) => {
const resume = req.body;
// In a real application, perform validation and possibly store in a database.
resumes.push(resume);
res.status(201).json({ message: 'Resume created successfully', resume });
});
// Endpoint to retrieve all resumes
app.get('/api/resumes', (req, res) => {
res.status(200).json(resumes);
});
Place these routes below the existing route that checks the root URL so that all routes are defined before the server starts listening. This will allow users to create and fetch resume data via your API.
Defining the Data Model for the Resume
Although Lovable is a no-code environment, you can simulate a basic data model for resumes directly in your code. Create a file called resumeModel.js
in the project root. Use this file to define a JavaScript object that outlines the structure of a resume. Insert the following code into resumeModel.js
:
/\*\*
- Resume Model
- This model defines the structure of a resume.
\*/
const Resume = {
id: null,
name: '',
email: '',
phone: '',
education: [],
experience: [],
skills: []
};
module.exports = Resume;
This is a simple object that can be expanded as needed. You can import this model into your app.js
when performing validations or data manipulation.
Integrating Data Storage or Database
For demonstration purposes, resumes are stored in an in‑memory array (as shown in the API endpoints). In a production scenario, you would integrate a database. Since Lovable does not allow terminal commands for installing database drivers, you would need to add any required database libraries (such as mongoose
for MongoDB) manually to your package.json
and then require them in your code. For example, if you plan to use MongoDB, add the dependency to your package.json
like so:
"dependencies": {
"express": "^4.18.2",
"body-parser": "^1.20.2",
"mongoose": "^7.0.0"
}
Then, in your app.js
, add code to connect to MongoDB using a connection string stored as an environment variable:
const mongoose = require('mongoose');
// Connect to MongoDB using a connection string defined in Lovable's environment variables
const mongoURI = process.env.MONGO\_URI;
if(mongoURI){
mongoose.connect(mongoURI, { useNewUrlParser: true, useUnifiedTopology: true })
.then(() => console.log('Connected to MongoDB'))
.catch(err => console.error(err));
} else {
console.log('No MongoDB connection string provided');
}
Place this snippet at the top of your app.js
file, right after requiring other dependencies.
Testing and Running Your Resume Builder Backend
Once you have added all the code snippets above, save all files. Lovable will detect changes in the package.json
and app.js
files and automatically install dependencies. To test your backend:
/
)./api/resumes
using HTTP methods GET
and POST
.
Deploying Changes and Collaboration
Each time you make changes in your code, simply save the files. Lovable will handle dependency updates and restart your server automatically. For collaboration, share the Lovable project with teammates by using the platform’s sharing and invite options. This makes it easy for non‑tech or distributed teams to update and review the backend code for your Resume Builder application.
const express = require('express');
const bodyParser = require('body-parser');
const pdf = require('html-pdf');
const path = require('path');
const fs = require('fs');
const app = express();
app.use(bodyParser.json());
// Function to transform raw resume JSON into structured data
function structureResumeData(rawData) {
return {
personal: {
name: rawData.personal.name,
email: rawData.personal.email,
phone: rawData.personal.phone
},
summary: rawData.summary,
experiences: rawData.experiences.map(item => ({
company: item.company,
role: item.role,
duration: `${item.startDate} to ${item.endDate}`,
details: item.details
})),
education: rawData.education,
skills: rawData.skills
};
}
app.post('/api/resume', (req, res) => {
try {
// Structure the incoming resume JSON
const structuredData = structureResumeData(req.body);
// Integrate with Lovable-like mechanism; here we simulate it by merging template with data
const htmlTemplate = \`
${structuredData.personal.name}
Email: ${structuredData.personal.email} | Phone: ${structuredData.personal.phone}
Summary
${structuredData.summary}
Experience
${structuredData.experiences.map(exp => \`
${exp.role} at ${exp.company}
${exp.duration}
${exp.details}
\`).join('')}
Education
${structuredData.education.map(edu => \`
${edu.institution}
${edu.degree} (${edu.startYear} - ${edu.endYear})
\`).join('')}
Skills
${structuredData.skills.map(skill => `- ${skill}
`).join('')}
\`;
// Generate PDF from the HTML content using html-pdf
pdf.create(htmlTemplate, { format: 'Letter' }).toFile('./generated\_resume.pdf', (err, result) => {
if (err) {
return res.status(500).json({ error: err.toString() });
}
res.status(200).json({
message: 'Resume PDF generated successfully.',
downloadUrl: '/api/resume/download',
data: structuredData
});
});
} catch (error) {
res.status(500).json({ error: error.toString() });
}
});
// Route for serving the generated PDF
app.get('/api/resume/download', (req, res) => {
const filePath = path.resolve('./generated\_resume.pdf');
if (fs.existsSync(filePath)) {
res.sendFile(filePath);
} else {
res.status(404).json({ error: 'File not found.' });
}
});
app.listen(3000, () => {
console.log('Resume builder backend running on port 3000');
});
const express = require('express');
const axios = require('axios');
const PDFDocument = require('pdfkit');
const fs = require('fs');
const path = require('path');
const app = express();
app.use(express.json());
app.post('/api/resume/enhance', async (req, res) => {
try {
const resumeData = req.body;
// Call an external API (e.g., Lovable's resume formatter) to get an enhanced HTML template
const response = await axios.post('https://api.lovable.com/v1/format-resume', resumeData, {
headers: { 'Authorization': `Bearer ${process.env.LOVABLE_API_KEY}` }
});
const enhancedHtml = response.data.enhancedTemplate;
// Generate a PDF using PDFKit from the enhanced HTML content.
// Note: PDFKit doesn't render HTML directly.
// We simulate rendering by extracting text nodes from the HTML response.
const doc = new PDFDocument();
const fileName = `resume_${Date.now()}.pdf`;
const outputPath = path.join(\_\_dirname, fileName);
const writeStream = fs.createWriteStream(outputPath);
doc.pipe(writeStream);
doc.fontSize(16).text("Enhanced Resume", { align: 'center' });
doc.moveDown();
// For demonstration, we simply remove HTML tags to extract text content.
const strippedContent = enhancedHtml.replace(/<[^>]+>/g, '');
doc.fontSize(12).text(strippedContent, { align: 'left' });
doc.end();
writeStream.on('finish', () => {
res.json({
message: 'Resume enhanced and PDF generated successfully.',
downloadUrl: `/api/resume/download/${fileName}`
});
});
} catch (error) {
res.status(500).json({ error: error.message });
}
});
app.get('/api/resume/download/:fileName', (req, res) => {
const filePath = path.join(\_\_dirname, req.params.fileName);
if (fs.existsSync(filePath)) {
res.download(filePath);
} else {
res.status(404).json({ error: 'File not found.' });
}
});
const port = process.env.PORT || 4000;
app.listen(port, () => {
console.log(`Resume builder backend running on port ${port}`);
});
const express = require('express');
const axios = require('axios');
const NodeCache = require('node-cache');
const bodyParser = require('body-parser');
const app = express();
app.use(bodyParser.json());
// Cache instance to prevent repeated analysis for identical resume submissions
const resumeCache = new NodeCache({ stdTTL: 3600 });
// Helper function to generate a simple hash key from resume data
function generateCacheKey(data) {
return Buffer.from(JSON.stringify(data)).toString('base64');
}
app.post('/api/resume/analyze', async (req, res) => {
const resumeData = req.body;
const cacheKey = generateCacheKey(resumeData);
const cachedAnalysis = resumeCache.get(cacheKey);
if (cachedAnalysis) {
return res.status(200).json({
message: 'Returning cached analysis result',
analysis: cachedAnalysis
});
}
try {
// Simulated call to Lovable's resume analysis API
const apiResponse = await axios.post('https://api.lovable.com/v1/analyze-resume', resumeData, {
headers: {
'Authorization': `Bearer ${process.env.LOVABLE_API_KEY}`,
'Content-Type': 'application/json'
}
});
// Process the response to structure recommendations by category
const analysisData = apiResponse.data;
const recommendationsByCategory = analysisData.recommendations.reduce((acc, rec) => {
if (!acc[rec.category]) {
acc[rec.category] = [];
}
acc[rec.category].push(rec.message);
return acc;
}, {});
const finalAnalysis = {
score: analysisData.score,
recommendations: recommendationsByCategory,
feedback: analysisData.feedback
};
// Store in cache for future identical requests
resumeCache.set(cacheKey, finalAnalysis);
res.status(200).json({
message: 'Resume analysis complete',
analysis: finalAnalysis
});
} catch (err) {
res.status(500).json({
error: err.toString()
});
}
});
app.listen(5000, () => {
console.log('Resume analysis backend running on port 5000');
});
Book a call with an Expert
Starting a new venture? Need to upgrade your web app? RapidDev builds application with your growth in mind.
Project Overview
Prerequisites
Designing the Backend Architecture
Setting Up the Development Environment
pip install Flask requests
Integrating AI Code Generators
import os
import requests
def generate_code(prompt):
api_key = os.getenv('AI_API_KEY')
endpoint = "https://api.example.com/v1/generate"
headers = {"Authorization": f"Bearer {api_key}"}
payload = {"prompt": prompt, "max_tokens": 150}
response = requests.post(endpoint, json=payload, headers=headers)
if response.status_code == 200:
return response.json().get("generated_code", "")
else:
return "Error generating code"
Building the Resume Generation API
from flask import Flask, request, jsonify
from ai_integration import generate_code
app = Flask(name)
@app.route('/generate-resume', methods=['POST'])
def generate_resume():
data = request.get_json()
prompt = f"Create a resume for a candidate with the following details: {data.get('details')}"
resume_content = generate_code(prompt)
return jsonify({"resume": resume_content})
if name == "main":
app.run(host="0.0.0.0", port=5000)
Handling Data and Storage
Ensuring Security and Scalability
Testing Your Backend
curl -X POST http://localhost:5000/generate-resume -H "Content-Type: application/json" -d '{"details": "Experience in Python and web development"}'
Deployment
Maintenance and Future Updates
Summary and Best Practices
When it comes to serving you, we sweat the little things. That’s why our work makes a big impact.